FUNCTION member_of

(* SCHEMA step_merged_ap_schema; *)
-- IN AP238 STEP-NC/AP242
FUNCTION member_of
      (val : GENERIC : G;
       spc : maths_space ) : LOGICAL;
      FUNCTION fedex
         (val : AGGREGATE OF GENERIC : x;
          i : INTEGER ) : GENERIC : x;
         RETURN (val[i]);
      END_FUNCTION;
   LOCAL
      v : maths_value := simplify_maths_value(convert_to_maths_value(val));
      vtypes : SET OF STRING := stripped_typeof(v);
      s : maths_space := simplify_maths_space(spc);
      stypes : SET OF STRING := stripped_typeof(s);
      tmp_int : INTEGER;
      tmp_real : REAL;
      tmp_cmplx : complex_number_literal;
      lgcl : LOGICAL;
      cum : LOGICAL;
      vspc : maths_space;
      sspc : maths_space;
      smem : SET OF maths_value;
      factors : LIST OF maths_space;
   END_LOCAL;
      IF NOT EXISTS(s) THEN
         RETURN (FALSE);
      END_IF;
      IF NOT EXISTS(v) THEN
         RETURN (s = the_generics);
      END_IF;
      IF ((('GENERIC_EXPRESSION' IN vtypes) AND NOT ('MATHS_SPACE' IN vtypes)) AND NOT ('MATHS_FUNCTION' IN vtypes)) AND NOT ('COMPLEX_NUMBER_LITERAL' IN vtypes) THEN
         IF has_values_space(v) THEN
            vspc := values_space_of(v);
            IF subspace_of(vspc, s) THEN
               RETURN (TRUE);
            END_IF;
            IF NOT compatible_spaces(vspc, s) THEN
               RETURN (FALSE);
            END_IF;
            RETURN (UNKNOWN);
         END_IF;
         RETURN (UNKNOWN);
      END_IF;
      IF 'ELEMENTARY_SPACE' IN stypes THEN
         CASE s\elementary_space.space_id OF
            es_numbers :
                  RETURN (('NUMBER' IN vtypes) OR ('COMPLEX_NUMBER_LITERAL' IN vtypes));
            es_complex_numbers :
                  RETURN ('COMPLEX_NUMBER_LITERAL' IN vtypes);
            es_reals :
                  RETURN (('REAL' IN vtypes) AND NOT ('INTEGER' IN vtypes));
            es_integers :
                  RETURN ('INTEGER' IN vtypes);
            es_logicals :
                  RETURN ('LOGICAL' IN vtypes);
            es_booleans :
                  RETURN ('BOOLEAN' IN vtypes);
            es_strings :
                  RETURN ('STRING' IN vtypes);
            es_binarys :
                  RETURN ('BINARY' IN vtypes);
            es_maths_spaces :
                  RETURN ('MATHS_SPACE' IN vtypes);
            es_maths_functions :
                  RETURN ('MATHS_FUNCTION' IN vtypes);
            es_generics :
                  RETURN (TRUE);
         END_CASE;
      END_IF;
      IF 'FINITE_INTEGER_INTERVAL' IN stypes THEN
         IF 'INTEGER' IN vtypes THEN
            tmp_int := v;
            RETURN ((s\finite_integer_interval.min <= tmp_int) AND (tmp_int <= s\finite_integer_interval.max));
         END_IF;
         RETURN (FALSE);
      END_IF;
      IF 'INTEGER_INTERVAL_FROM_MIN' IN stypes THEN
         IF 'INTEGER' IN vtypes THEN
            tmp_int := v;
            RETURN (s\integer_interval_from_min.min <= tmp_int);
         END_IF;
         RETURN (FALSE);
      END_IF;
      IF 'INTEGER_INTERVAL_TO_MAX' IN stypes THEN
         IF 'INTEGER' IN vtypes THEN
            tmp_int := v;
            RETURN (tmp_int <= s\integer_interval_to_max.max);
         END_IF;
         RETURN (FALSE);
      END_IF;
      IF 'FINITE_REAL_INTERVAL' IN stypes THEN
         IF ('REAL' IN vtypes) AND NOT ('INTEGER' IN vtypes) THEN
            tmp_real := v;
            IF s\finite_real_interval.min_closure = closed THEN
               IF s\finite_real_interval.max_closure = closed THEN
                  RETURN ((s\finite_real_interval.min <= tmp_real) AND (tmp_real <= s\finite_real_interval.max));
               ELSE
                  RETURN ((s\finite_real_interval.min <= tmp_real) AND (tmp_real < s\finite_real_interval.max));
               END_IF;
            ELSE
               IF s\finite_real_interval.max_closure = closed THEN
                  RETURN ((s\finite_real_interval.min < tmp_real) AND (tmp_real <= s\finite_real_interval.max));
               ELSE
                  RETURN ((s\finite_real_interval.min < tmp_real) AND (tmp_real < s\finite_real_interval.max));
               END_IF;
            END_IF;
         END_IF;
         RETURN (FALSE);
      END_IF;
      IF 'REAL_INTERVAL_FROM_MIN' IN stypes THEN
         IF ('REAL' IN vtypes) AND NOT ('INTEGER' IN vtypes) THEN
            tmp_real := v;
            IF s\real_interval_from_min.min_closure = closed THEN
               RETURN (s\real_interval_from_min.min <= tmp_real);
            ELSE
               RETURN (s\real_interval_from_min.min < tmp_real);
            END_IF;
         END_IF;
         RETURN (FALSE);
      END_IF;
      IF 'REAL_INTERVAL_TO_MAX' IN stypes THEN
         IF ('REAL' IN vtypes) AND NOT ('INTEGER' IN vtypes) THEN
            tmp_real := v;
            IF s\real_interval_to_max.max_closure = closed THEN
               RETURN (tmp_real <= s\real_interval_to_max.max);
            ELSE
               RETURN (tmp_real < s\real_interval_to_max.max);
            END_IF;
         END_IF;
         RETURN (FALSE);
      END_IF;
      IF 'CARTESIAN_COMPLEX_NUMBER_REGION' IN stypes THEN
         IF 'COMPLEX_NUMBER_LITERAL' IN vtypes THEN
            RETURN (member_of(v\complex_number_literal.real_part, s\cartesian_complex_number_region.real_constraint) AND member_of(v\complex_number_literal.imag_part, s\cartesian_complex_number_region.imag_constraint));
         END_IF;
         RETURN (FALSE);
      END_IF;
      IF 'POLAR_COMPLEX_NUMBER_REGION' IN stypes THEN
         IF 'COMPLEX_NUMBER_LITERAL' IN vtypes THEN
            tmp_cmplx := v;
            tmp_cmplx.real_part := tmp_cmplx.real_part - s\polar_complex_number_region.centre.real_part;
            tmp_cmplx.imag_part := tmp_cmplx.imag_part - s\polar_complex_number_region.centre.imag_part;
            tmp_real := SQRT(tmp_cmplx.real_part ** 2 + tmp_cmplx.imag_part ** 2);
            IF NOT member_of(tmp_real, s\polar_complex_number_region.distance_constraint) THEN
               RETURN (FALSE);
            END_IF;
            IF tmp_real = 0.0 THEN
               RETURN (TRUE);
            END_IF;
            tmp_real := atan2(tmp_cmplx.imag_part, tmp_cmplx.real_part);
            RETURN (member_of(tmp_real, s\polar_complex_number_region.direction_constraint) OR member_of(tmp_real + 2.0 * 3.14159, s\polar_complex_number_region.direction_constraint));
         END_IF;
         RETURN (FALSE);
      END_IF;
      IF 'FINITE_SPACE' IN stypes THEN
         smem := s\finite_space.members;
         cum := FALSE;
         REPEAT i := 1 TO SIZEOF(smem);
            cum := cum OR equal_maths_values(v, smem[i]);
            IF cum = TRUE THEN
               RETURN (TRUE);
            END_IF;
         END_REPEAT;
         RETURN (cum);
      END_IF;
      IF 'UNIFORM_PRODUCT_SPACE' IN stypes THEN
         IF 'LIST' IN vtypes THEN
            IF SIZEOF(v) = s\uniform_product_space.exponent THEN
               sspc := s\uniform_product_space.base;
               cum := TRUE;
               REPEAT i := 1 TO SIZEOF(v);
                  cum := cum AND member_of(v[i], sspc);
                  IF cum = FALSE THEN
                     RETURN (FALSE);
                  END_IF;
               END_REPEAT;
               RETURN (cum);
            END_IF;
         END_IF;
         RETURN (FALSE);
      END_IF;
      IF 'LISTED_PRODUCT_SPACE' IN stypes THEN
         IF 'LIST' IN vtypes THEN
            factors := s\listed_product_space.factors;
            IF SIZEOF(v) = SIZEOF(factors) THEN
               cum := TRUE;
               REPEAT i := 1 TO SIZEOF(v);
                  cum := cum AND member_of(v[i], factors[i]);
                  IF cum = FALSE THEN
                     RETURN (FALSE);
                  END_IF;
               END_REPEAT;
               RETURN (cum);
            END_IF;
         END_IF;
         RETURN (FALSE);
      END_IF;
      IF 'EXTENDED_TUPLE_SPACE' IN stypes THEN
         IF 'LIST' IN vtypes THEN
            sspc := s\extended_tuple_space.base;
            tmp_int := space_dimension(sspc);
            IF SIZEOF(v) >= tmp_int THEN
               cum := TRUE;
               REPEAT i := 1 TO tmp_int;
                  cum := cum AND member_of(v[i], factor_space(sspc, i));
                  IF cum = FALSE THEN
                     RETURN (FALSE);
                  END_IF;
               END_REPEAT;
               sspc := s\extended_tuple_space.extender;
               REPEAT i := tmp_int + 1 TO SIZEOF(v);
                  cum := cum AND member_of(v[i], sspc);
                  IF cum = FALSE THEN
                     RETURN (FALSE);
                  END_IF;
               END_REPEAT;
               RETURN (cum);
            END_IF;
         END_IF;
         RETURN (FALSE);
      END_IF;
      IF 'FUNCTION_SPACE' IN stypes THEN
         IF 'MATHS_FUNCTION' IN vtypes THEN
            vspc := v\maths_function.domain;
            sspc := s\function_space.domain_argument;
            CASE s\function_space.domain_constraint OF
               sc_equal :
                     cum := equal_maths_spaces(vspc, sspc);
               sc_subspace :
                     cum := subspace_of(vspc, sspc);
               sc_member :
                     cum := member_of(vspc, sspc);
            END_CASE;
            IF cum = FALSE THEN
               RETURN (FALSE);
            END_IF;
            vspc := v\maths_function.range;
            sspc := s\function_space.range_argument;
            CASE s\function_space.range_constraint OF
               sc_equal :
                     cum := cum AND equal_maths_spaces(vspc, sspc);
               sc_subspace :
                     cum := cum AND subspace_of(vspc, sspc);
               sc_member :
                     cum := cum AND member_of(vspc, sspc);
            END_CASE;
            RETURN (cum);
         END_IF;
         RETURN (FALSE);
      END_IF;
      RETURN (UNKNOWN);
END_FUNCTION;

Referenced By

Defintion member_of is references by the following definitions:
DefinitionType
 banded_matrix ENTITY
 basic_sparse_matrix ENTITY
 compatible_spaces FUNCTION
 equal_maths_spaces FUNCTION
 equal_maths_values FUNCTION
 function_space ENTITY
 linearized_table_function ENTITY
 listed_data ENTITY
 simplify_function_application FUNCTION
 subspace_of FUNCTION
 symmetric_banded_matrix ENTITY
 triangular_matrix ENTITY
 variational_parameter ENTITY


[Top Level Definitions] [Exit]

Generated by STEP Tools® EXPRESS to HTML Converter
2024-09-06T14:00:33-04:00