3 ST-Developer

for Java Reference
Manual

STEP Tools® Software

Contributors

Written by Joe Fritz.

© Copyright 1991-2010 STEP Tools, Inc. — All Rights Reserved.

This document contains proprietary and confidential information of STEP Tooals, Inc. The contents of this
document may not be disclosed to third parties, copied, or duplicated in any form, in whole or in part, without
the prior written permission of STEP Tools, Inc.

ST-Developer, ST-Machine, ST-Viewer, and the ST prefix are trademarks of STEP Tools, Inc. STEP Tools
isaregistered trademark of STEP Tools, Inc. Other brand or product names are the trademarks or registered
trademarks of their respective holders.

STEP Tools, Inc.
14 First Street
Troy, New York 12180

Phone....... (518) 687-2848
Fax (518) 687-4420
E-Mail info@steptools.com

Web......... http://www.steptools.com

Contents

CON NS . i
1 —Getting Started 1
1.1 OVeIVIBW oot 1

1.2 ASimple Example e 2

1.3 Pre-installed Application Protocols 3

2 — Reading, Writing, and TraversingData 5
2.1 OVEIVIBW . ittt e e 5

2.2 Modelsand Populations i 5

2.3 Managing Entity Instances 6

2.4 Accessing Entity Instances by Type 7

25 ReadingPart21 Files 8

26 WritingPart 21 Files 8

2.7 Entity Instance Identifiers 9

2.8 STEPHeader 10
3—From EXPRESStoJavaClassSesiiiiiiiiiaa.. 11
3.l OVEIVIBW . .ottt 11

3.2 CommandLineuiiiiii 12

3.3 NAMESPACESottt 12

3.4 Primitive TYPeS 13

3.5 EXPRESS SChemasc.couiiiiiiiiiiiiiiiinnn.. 13

351 POPUIAtiON . . vt e e e 14

35,2 SCNEMA . . vttt e e e 15

3.6 ENntity TypesS . ..o 15

3.6.1 Single INNEertanCe v vttt i e e e 16

3.6.2 Multiple Inheritancet 17

3.6.3 COmMPIEX INSIANCES . v v vt vttt e 19

364 VIBWS ot ittt e e 20

ST-DEVELOPER FOR JAVA REFERENCE MANUAL

CONTENTS

3.7
3.8

3.9

Enumeration Types 20
SeleCt TYPES .o v v 21
3.8.1 Creating Select INStanCes v v v i ittt 22
3.8.2 Selection Naming Conventions v vt v ittt et e 23
3.83 Nested Selects v ittt e 23
Aggregation TYPESottt 26

STEP TooLs, INC.

Getting Started

1.1 Overview

The ST-Developer for Java programming environment consists of a EXPRESS
compiler that can generate Java classes (express2java), and a set of foundation

classes (stdev.jar) that provide services such as reading and writing instances to
STEP Part 21 exchange files.

You can build a Java application around any EXPRESS information model. The
express2java compiler generates pure Javaclassesfor every definitioninthe model,
which you can then use to create and manipulate data sets. We include pre-gener-
ated classesfor all STEP Application Protocols (ap203.jar, ap214.jar, €tc), and other
common models(IFC, CIS/2), so you may not even need the compiler to get started!

All of the classes that we generate or provide are pure Java, so they will work on
any platform with aJVM. Just drop the jar filesinto your class path and go!

Below are some simple examples and following chapters describe the interface in
moredetail. Reading, Writing, and Traversing Data (Chapter 2, pp. 5) describes how
instance datais grouped in memory and how to control the reading and writing of
files. From EXPRESS to Java Classes (Chapter 3, pp. 11) describeshow EXPRESS
constructs are represented in the generated Java classes, how to get and set values,
and other operations on the instance data.

ST-DEVELOPER FOR JAVA REFERENCE MANUAL

1 GETTING STARTED

1.2 A Simple Example

ThisisaJavaversion of the“tutorial1” demo included with the ST-Developer C++
API. This creates asmall data set based on asimple “picture” schema with points
and lines.

import java.io.IOException;

import com.steptools.stdev.*;
import com.steptools.stdev.p2l.Part2lWriter;
import com.steptools.schemas.picture.*;

public class tutoriall {
public static void main (String[] args) throws IOException {

Model mod = new Model (Schema.SCHEMA) ;
Population pop = (Population)mod.getPopulation();

/* Create a point using the default constructor

* and use the update methods to set its values. */
Point pointl = pop.newPoint() ;
pointl.setX(1.0);
pointl.setY(0.0);

Point point2 = pop.newPoint ();
point2.setX(2.5);
point2.setY(4.0);

Point point3 = pop.newPoint () ;
point3.setX(5.0)
0

.0
point3.setY(0.0)

I
I

/* Create a Line Object */
Line line = pop.newLine();
line.setEnda (pointl) ;
line.setEndb (point2) ;

/* Create a Circle with Center (0,0), radius 1.5 */
Point point4 = pop.newPoint();

point4.setX(0.0) ;

point4.setY(0.0);

Circle circlel = pop.newCircle ();
circlel.setRadius(1.5);
circlel.setCenter (point4) ;

/* Create a Text Object centered at point3 */
Text text = pop.newlext ();

text.setlabel ("A Little Picture");
text.setCenter (point3) ;

STEP TooLs, INC.

1 GETTING STARTED

/* Create another Circle Object */
Circle circle2 = pop.newCircle();
circle2.setRadius(1.5);
circle2.setCenter (point2) ;

Part2lWriter writer = new Part2lWriter();
writer.write("tutoriall.stp", mod);

}

To compile, you will need the location of the stdev.jar file. All jar files provided
with ST-Developer are located in the installation “lib/java’ directory. The ROSE
environment variableis normally set to the ST-Developer installation directory, so
we can use $ROSE/lib/java or %ROSE%\lib\java when setting our class path.

Our sample EXPRESS schemaisin picture.exp. Call the EXPRESS compiler to
generatethe Javasourcefiles. The*.java sourcefileswill be put inthejava_classes
subdirectory:

> express2java picture.exp

Next we will compile the source files with the Java compiler to create *.class files.
Create adirectory called obj to hold the output. Note that the source files are under
a special namespace for the “picture” schema.

> mkdir java_objs

> javac -classpath "$ROSE%"\lib\java\stdev.jar -d java_objs \
tutoriall.java \
java_classes\cam\steptools\schemas\picture*.java

Run the application. We need to set the class path to find both the ST-Devel oper
base classes (stdev.jar) and the classes for our schema.

> java -classpath "$ROSE$"\lib\java\stdev.jar;java_objs tutoriall

The demos directory includes two sampl e applications that demonstrate how to use
theinterface. Seethe README.txt for tutorial1 for instructions on how to compile
and run that sample application

1.3 Pre-installed Application
Protocols

In the previous example, we generated the Java classes for our own example sche-

ST-DEVELOPER FOR JAVA REFERENCE MANUAL

1 GETTING STARTED

ma, but when you build your applications, you are more likely to work against one
of the STEP application protocols, like AP203 or AP214. ST-Developer shipswith
pre-built Javalibraries for the common APs and other models like C1S/2 and I FC.

You can start programming immediately, just by adding the appropriate library to

your classpath, such asap203lib.jar, ap214lib.jar, or others. The ST-Developer on-
line documentation has the complete list of APs available as well as class listings,

browsable EXPRESS definitions, recommended practices and more.

ap2011ib.j
ap2021ib.
ap2031ib.
ap2091ib.j
ap2141ib.
ap2151ib.
ap2161ib.7j
ap2181ib.
ap2241ib.
ap2251ib.3J
ap2271ib.
ap2321ib.
ap2381ib.J

jar
jar
jar
jar
jar
jar
jar
jar
jar
jar
jar
jar
jar

cislib.jar
ifclib.jar

caom.
caom.
cam.
caom.
caom.
caom.
caom.
caom.
caom.
caom.
caom.
caom.
caom.
caom.
caom.

steptools

steptools
steptools

steptools
steptools

steptools
steptools

steptools
steptools

steptools

.schemas.
steptools.
.schemas.
.schemas.
steptools.
.schemas.
.schemas.
steptools.
.schemas.
.schemas.
steptools.
.schemas.
.schemas.
steptools.
.schemas.

schemas

schemas

schemas

schemas

schemas

explicit_draughting

.associative draughting

config_control design
structural_analysis design

.automotive design

ship_arrangement_schema
ship_moulded form schema

.ship_structures schema

feature based process planning
building design schema

.plant_spatial_configuration

technical_ data packaging
integrated cnc_schema

.structural_frame schema

ifc2x2_final

STEP TooLs, INC.

Reading, Writing, and
Traversing Data

2.1 Overview

The ST-Developer for Javalibrary includes foundation classes that provide data
management and serve as the base which is extended by the EXPRESS compiler.
These classes provide the high-level data management, store metadata for the EX-
PRESS schema, and implement alate-bound API to the STEP data.

Unless otherwise indicated, all classes and interfaces are declared in the com.step-
tools.stdev namespace. Definitionsin the schema namespace are generated by the
EXPRESS compiler under com.steptools.schemas.<schname>, where schname is
the name of the schema.

2.2 Models and Populations

STEP instances are organized into model and populations. A model coresponds to
an entireaSTEP Part 21 file, and a population corresponds to the HEADER or DATA
section within the file. Most models will contain a header and a data population,

but some might contain several data populations (the second edition of Part 21 al-
lows more than one data section). Populations contain the STEP entity instances.
Each population is associated with exactly one EXPRESS schema.

A model is represented by the Model classin com.steptools.stdev. A population is
represented by a generated class named Population in the schema namespace. The

ST-DEVELOPER FOR JAVA REFERENCE MANUAL

2 READING, WRITING, AND TRAVERSING DATA

Population class extendsthe PopulationBase classin com.steptools.stdev. Thereis
no schema-specific model class, since aschema can contain instances from several
schemas. Any method of Model that returns apopul ation object isdeclared to return
PopulationBase, which you may need to cast down to the intended type.

To create aModel with aPopulation, pass the schemato the constructor for the Mod-
el. ThePopulation canthen be obtained by calling getPopulation() ontheModel. The
following example shows how to create and populate amodel. In this example, the
schemais not imported in order to emphasize which definitions come from the ST-
Developer class library, and which are EXPRESS compiler generated classes.

/* In this example, no schemas are imported.

* actual code is likely to be much less verbose.

*/

Model mod = new Model

(com. steptools.schemas.config control_design.Schema.SCHEMA) ;
com. steptools.schemas.config_control design.Population pop
= mod.getPopulation() ;

/* Create a instance */
com. steptools.schemas.config _control_design.Cartesian point point
= pop.newCartesianPoint () ;

Generally, amModel will only contain asingle Population of user instances. The Part
21 interface uses an additional Population to hold the STEP header information. It
ispossible, however, to create aModel with more than one Population. This can be
used, to create aPart 21 file with multiple datasections. To create aModel with more
than one Population, use the default, no argument, constructor for Model, and use
thenewPopulation method to create each Population inthe model. Each Population
must have an identifier, which isajava.lang.Object that is specified as a parameter
to the newPopulation method. For models saved in Part 21 files, thisidentifier must
be a string that gives the name of the data section in the Part 21 file.

To get adefault Population from aModel, use one of the getPopulation methods.
With no arguments, or with anull parameter getPopulation return the default Popu-
lation of the Model. If you specify an argument it is interpreted as an identifier,and
getPopulation returns the Population with the specified identifier, or null if no Pop-
ulation exists with that identifier.

2.3

Managing Entity Instances

STEP entity instances are represented by interfaces generated by the EXPRESS
compiler. For every entity in a schema, the compiler creates a corresponding inter-
facein the schemanamespace. These generated i nterfaces extend the EntityInstance

STEP TooLs, INC.

2 READING, WRITING, AND TRAVERSING DATA

interface.

The schema-specific Population class contains amethod to create entity instancein
the schema. This method is named new<Entname> where Entname is the name of
the entity, as mapped to Java (first letter is capitalized, all otherslowercase).

To create an entity instance in aPopulation, call the appropriate new method on the
Population.

To remove an entity instance from a Population call the removel nstance method.
Theinstance is removed from the Population, but it will not get deleted from mem-
ory until the garbage collector notices that the instance is unreferenced.

2.4 Accessing Entity Instances by
Type

The Population classes provides several methods to find instances by type. Thisis
the most common way to access the data after loading a Model from afile on disk.
The getExtent and getFolder methods each return an EntityExtent containing all the
entity instances of agiven type. The EntityExtent that the getExtent method returns
also contain instances of all subtypes of the specified type. The EntityExtent class
implements the java.util.Set interface, so you can obtain an Iterator, and traverse
over the instances.

The following code traverses over all the product entity instancesin aPopulation.

import caom.steptools.schemas.config control_design.*;
import caom.steptools.stdev.*;
import java.util.*;

/* much further down - inside a class */
void processProducts (Population pop) {
EntityExtent prods = pop.getExtent (Product.DOMAIN) ;
Iterator itor = prods.iterator();
while (itor.hasNext()) {
Product prod = (Product) itor.next();
/* Now do something with the product */

ST-DEVELOPER FOR JAVA REFERENCE MANUAL

2 READING, WRITING, AND TRAVERSING DATA

2.5 Reading Part 21 Files
The Part21Parser class reads a Part 21 file into memory. To read afile, create an
instance of Part21Parser, then call one of the parse methodsto read the Model. For
flexibility, the parse method is overloaded to take either afile name, ajava.io.File
object, or ajava.io.Reader object. Whichever versionis called, aModel isreturned.
The Part21Parser object may be reused to read multiplefiles.
The following code demonstrates how to read a Part 21 file, given the file name.
/* at the top of your code: */
import com.steptools.stdev.*;
import com.steptools.stdev.p2l.*;
/* inside a class: */
Model read file (String filename) throws STDevException, IOException {
Part2lParser parser = new Part2lParser() ;
return parser.parse (filename) ;
}
The Part 21 file header contains string that identifies the STEP schema. Normally
the schemais found by loading the class named com.steptools.schemas.<schema-
name>.Schema. You can override this behavior, by subclassing part21Parser, and
overriding the getSchema method. The following code demonstrates how to read
every Part 21 file asif it were an AP203 file:
import com.steptools.stdev.p2l.*;
class AP203Parser extends Part2lParser {
public SchemaBase getSchema (String name) {
/* The schema object is in a static field of the Schema class */
return com.steptools.schemas.config control design.Schema.SCHEMA;
}
}
2.6 Writing Part 21 Files

The Part21Writer classisused to write aModel to secondary storage. TowriteaPart
21 file, create an instance of Part21Writer, and call one of the write methods. The
write method is overloaded to take either afile name, ajava.io.File object, or a
java.io.Writer object for maximum flexibility. The same Part21Writer can be used to
write multiple models to secondary storage.

STEP TooLs, INC.

2 READING, WRITING, AND TRAVERSING DATA

The following example demonstrates how to write aModel to secondary storage:

/* at the top of your code: */
import com.steptools.stdev.*;
import com.steptools.stdev.p2l.*;

/* inside a class: */

Model write file (Model mod) throws STDevException, IOException {
Part21Writer writer = new Part2lWriter();
return writer.write("test.stp", mod);

}

If you need to the control the name of the schemathat gets written in the header of
thefile, you can subclass Part21writer and override the getSchema method.

2.7 Entity Instance Identifiers

Every entity instance in aPart 21 file has an identifier. In the Part 21 file, the iden-
tifierisa“#" character followed by a number. ST-Developer includes the EntityID-
Table to track the identifiersin aModel. The EntitylDTable is created when aModel
isread from or written to a Part 21 file, or is can be created dynamically with the
EntitylDTable.forModel static method. Identifiersin the EntityIDTable are of typeja-
va.math.BigInteger.

To find an EntityIinstance by identifier, use the getinstance method of the EntityID-
Table instance. The following example shows how to find an instance:

void EntityInstance findByID (Model mod, BigInteger id) {

/* Get the EntityIDTable for the model. This method will get the

* table associated with the model. This will create the table if it
* does not already exist.

*/

EntityIDTable tab = EntityIDTable.forModel (mod) ;
return tab.getInstance(id);
}

To get the identifier for an Entityinstance, use the getid() method. Initially, only ob-
jectsthat were read from a Part 21 file or written to one will have IDs. The getld()
takes a second parameter, which, if true, will assign an identifier to object that do
not yet have one; otherwise, the method returns zero.

ST-DEVELOPER FOR JAVA REFERENCE MANUAL

10

2 READING, WRITING, AND TRAVERSING DATA

2.8 STEP Header

The HEADER section of a Part 21 file contains a timestamps, author, organization,
and related information. In memory, the header isrepresented asaPopulation of the
header_section_schema, which is defined in the Part 21 specification. While you
can directory access to population, it is more convient to use the
com.steptools.stdev.p21.Header class.

The Header class includes methods getFileName() and getFileDescription() which
return the file_name and file_description instances, respecively, from the Part 21
header. If theseinstances do not exist, they are created. In addition, a nunber of
attributes of these entities are declared aslists of strings. These methodsinsurethat
these lists exist by creating them is they are set to null.

This example shows how you could add a string to the description of afile:

import com.steptools.stdev.p2l.*;
import com.steptools.stdev.*;

void addDescription (Model mod, String desc) {
Header head = Header.forModel (mod) ;
return head.getFileName () .getFileDescription() .getDescription()

.add(desc) ;
}

The following example returns the “ originating system” attribute:

String getOrig (Model mod) {

Header head = Header.forModel (mod) ;
return head.getFileName () .getOriginating_system() ;

STEP TooLs, INC.

€] From EXPRESS to
Java Classes

3.1 Overview

This chapter describes how EXPRESS data structures are converted to Javaclasses
and interfaces by the express2java compiler. The EXPRESS information modeling
language is used to define the data structures in STEP Application Protocols.

The compiler isavailable as the command line express2java tool on all platforms.
On Windows, it can also be run through the EXPRESS/Java Converter control panel
found on the ST-Developer Launcher. The options and outputs are described in the
following sections.

File Help
~ EXPRESS Filefs] to Canvert (]
dz Additional Settings Clear |

Output folder java_classes |_|

Package

Figure 3.1 — EXPRESS to Java Control Panel

ST-DEVELOPER FOR JAVA REFERENCE MANUAL

11

12

3 FrRoM EXPRESS 10O JAVA CLASSES

3.2 Command Line
express2java [options] expfilel [expfile2 ...]
-help Display usage information
-o <path> Settheoutput location. If not specified, the output will bewritten to
java_classes
-forceschema <name> Useadifferent namefor thefinal package branch. By de-
fault, the name of the EXPRESS schemaiis used.
The EXPRESS to Java compiler reads a text file containing EXPRESS definitions,
parses the definitions, and checksthem for consistency. If multiplefilesaregiven,
the tool behaves asif all files were concatenated together into asinglefile.
3.3 Namespaces

ST-Developer provides several namespaces under com.steptools for the Java class-
esthat are provided either by the ST Developer base classes or by the classes gen-
erated by the EXPRESS compiler.

The com.steptools.stdev hamespace contains the basic definitions for the STEP
data and provides the base classes to manage the data, and to provide alate-bound
interface to the instance data. The classes and interfaces in this interface include
Entitylnstance, Domain, and PopulationBase.

The com.steptools.stdev.keystone hamespace provides definitions for EXPRESS
primitive types (except String, double and int —which are provided by Java) and for
single dimensional aggregates of all EXPRESS primitive types.

The com.steptools.stdev.p21 namespace contains the classes that read and write
Part 21 file and transfer STEP instance data between the Java classes provided by
ST-Developer and Part 21 files.

The EXPRESS compiler generatesanumber of Javadefinitionsfor each EXPRESS
schemathat it processes. All of the definitionsfor are placed in a namespace of the
form com.steptools.schemas.<schname>. Where schname is the name of the sche-
ma as defined in the EXPRESS “ SCHEMA” entry. For example, for AP203 the
namespace is com.steptools.schemas.config_control_design and for AP214, itis
com.steptools.schemas.automotive_design.

STEP TooLs, INC.

3 FrRoM EXPRESS 10 JAVA CLASSES

3.4

Primitive Types

The EXPRESS primitive types consist of integer, real, boolean, logical, string and
binary. These types are mapped to the corresponding Java type as specified in the
table below. All of these types are either provided by the Java environment, or the
ST-Developer class library.

EXPRESS Java

INTEGER int

REAL double

STRING String

BOOLEAN com.steptools.keystone.ExpBoolean

LOGICAL com.steptools.keystone.Logical

BINARY com.steptools.keystone.Binary

Asindicated in the table, attributes of type integer, real, and string are mapped to
the corresponding Javatype. For all the other types, ST-Devel oper provides aclass
in the com.steptools.keystone hamespace to represent the EXPRESS data type.

Although Java has the primitive type boolean, is not used for boolean values be-
cause it has no way to represent the STEP notion of an “unset” value.

EXPRESS Boolean values are represented by the constants of type ExpBoolean:
ExpBoolean.FALSE and ExpBoolean.TRUE. Logical values are represented by con-
stants of type Logical: Logical.FALSE, Logical. TRUE and Logical. UNKNOWN.

ExpBoolean and Logical override thetoString() method which will return the value
asastring: either “true’, “false” or “unknown”. Thereisalso abooleanValue()
method which return the value of aLogical or ExpBoolean asaJava primitive bool-
ean value. (Following the EXPRESS conventions, unknown is converted to true.)

3.5

EXPRESS Schemas

For each schemathe EXPRESS compiler generates two classes in the schema
namespace: oneisnamed Schema and oneisnamed Population. Theses classes pro-
vide the meta-data for the late-bound methods to use, and al so include methods for
creating entity instances.

ST-DEVELOPER FOR JAVA REFERENCE MANUAL

13

3 FrRoM EXPRESS 10O JAVA CLASSES

3.5.1

Since every schema-specific namespace contains aPopulation and and a Schema
class; importing the definitions from more than one schema, will cause aname con-
flict. For example, consider the import statements:

import com.steptools.stdev.*;
import com.steptools.schemas.config control_design.*;
import com.steptools.schemas.automative design.*

Thereisaconflict for the Population and Schema symbols, and so you must use a
fully qualified class name to reference the schema-specific class, or else you will
need to keep the code that imports the definitions from one schemain a different
Java source file from code that references a different schema. However, since most
applications only deal with asingle schema at atime, this should generally not ef-
fect your code.

Using the above declarations, you can reference the AP214 schema as follows:

com. steptools.schemas.automative design.Schema

Population

ThePopulation holdsthe entity instancesin amodel. For each data sectionin aPart
21 file, there will be one population instance to contain the entity instancesin the
section. The schema-specific Population class extends the abstract
com.steptools.stdev.PopulationBase class.

The Population classis used to create persistent STEP entity instances. For every
entity in the schema, the EXPRESS compiler generates a method which creates an
instance of it. This method is named new<Entname> where Entname is the capital -
ized name of the corresponding EXPRESS entity. Given the EXPRESS schema:

SCHEMA test;
ENTITY foo;
name: STRING;
END_ENTITY;
ENTITY bar;
length : REAL;
END_ENTITY;

END_SCHEMA;

The compiler will generate the following Population class. (Thisisasimplified ex-
ample. The actual classincludes code and additional members for internal use.)

STEP TooLs, INC.

3.5.2

3 FrRoM EXPRESS 10 JAVA CLASSES

package com.steptools.schemas.test;
import caom.steptools.stdev.PopulationBase;
public class Population extends PopulationBase {

Foo newFoo () ;
Bar newBar () ;

Schema

The Schema class represents the EXPRESS schema as awhole to the run-time sys-
tem. Unlike the Population class, thereisonly one instance of the Schema classfor

an EXPRESS schema. This static instance is stored in the static final field named

SCHEMA of the Schema class. The following code gets the Schema for AP203:

import cam.steptools.stdev.*;
import cam.steptools.schemas.config control_design.*;

/* then inside some method: */
Schema ap203_sch = Schema.SCHEMA;

/* Do something with the schema */
Model mod = new Model (ap203_sch) ;
Population pop = (Population) mod.getPopulation();

3.6

Entity Types

Each ENTITY type is mapped to a Java interface in the namespace corresponding
to the schema. The name of the interface consists of the EXPRESS name with the
first letter converted to uppercase, and all of the other lettersin lowercase.

Theinterface for the entity provides aget and a set method for each attribute. Thus,
for an attribute named items, there are methods named getitems and setltems. For
example, consider the following EXPRESS entity definition:

ENTITY action;

name : label;

description : text;

chosen method : action method;
END_ENTITY; -- action

The EXPRESS compiler generates a Java interface that includes the following

ST-DEVELOPER FOR JAVA REFERENCE MANUAL

15

3 FrRoM EXPRESS 10O JAVA CLASSES

3.6.1

members.

public interface Action extends EntityInstance {

public static final StaticEntityDomain DOMAIN /* stuff deleted */
void setName (String val) ;
String getName() ;

void setDescription(String val);
String getDescription() ;

void setChosen method (Action method val) ;
Action method getChosen method() ;
}i

In the EXPRESS, the label and text types are defined types where the underlying
typeis string. In the Java code, such simple defined types are fully resolved to the
underlying primitive type. The get and set methods provided by the interface con-
form to the naming conventions for JavaBeans classes.

Thefinal static field named DOMAIN contains the type information for the entity.
This can be used in late-bound applications to query the structure of the EXPRESS
information model, or it can be used to find all the object of a given type.

Since the entity is mapped to an interface and not to a class, there is no constructor
to create an instance. Instead, you must call the newxxx method on the Population.

Single Inheritance

When an EXPRESS entity hasa SUBTY PE OF clause that specifies asingle super-
type, it is mapped to a Javainterface that extends the interface that corresponds to
itssupertype, rather than the base interface Entityinstance. Thecalendar_date entity
is defined as follows:

ENTTTY calendar. date

SUBTYPE OF (date);
day component : day in month number;
month_component : month in year. number;

WHERE
WR1: valid calendar._date (SELF) ;
END_ENTTITY; -- calendar_date

The corresponding Java interface includes the following members:

public interface Calendar date extends Date {
public static final StaticEntityDomain DOMATN;

void setDay component (int val) ;

STEP TooLs, INC.

3.6.2

3 FrRoM EXPRESS 10 JAVA CLASSES

int getDay_ component () ;

void setMonth component (int val) ;
int getMonth component () ;
Yi

Since the interface extends the Date interface, all of the methods of Date are aso
available in the Calendar_date interface.

Multiple Inheritance

When an EXPRESS entity has a SUBTY PE OF clause that specifies two or more
supertypes, there are several possible waysto map it to a Javainterface.

When possible, the single inhertiance method documented above is used, except
that the Javainterface will extend all of the interfaces associated with the entity's
supertypes. For example: consider the follow entity:

ENTTTY poly loop

SUBTYPE OF (loop, geometric_representation_item);
polygon : LIST [3:?] OF UNIQUE cartesian point;

END_ENTTITY; -- poly loop

This maps to the following Javainterface:

public interface Poly. loop extends Loop, Geometric representation item {
public static final StaticEntityDomain DOMATN;
void setPolygon (ListCartesian point val);
ListCartesian_point getPolygon() ;

b

Unfortunately, it is not always possible to map entities with multipleinheritancein
this smple manner. Specifically, when different supertypes each declare an at-
tribute with the same name. In this case, there aretwo EXPRESS attributesthat map
to the same Java accessor methods, and so an alternative representation must be
used. The following EXPRESS definitions have such a conflict:

ENTTTY foo;
conflict: INTEGER;
f att: STRING;
END ENTITY;

ENTITY bar;
conflict: INTEGER;
b att: STRING;
END ENTITY;

ST-DEVELOPER FOR JAVA REFERENCE MANUAL

17

3 FrRoM EXPRESS 10O JAVA CLASSES

ENTITY sub

SUBTYPE OF (foo,bar) ;
size : INTEGER;

END ENTITY;

In this example, sub inherits the attribute named conflict from both foo and bar. It

is not possible to generate a corresponding Javainterface using the above rules, so
thisistreated as a special case. The interfacesfor the supertypes are generated us-
ing the usual rules:

public interface Foo extends EntityInstance {
void setConflict (int val);
int getConflict();

void setF _att(String val);
String getF_att();
};

public interface Bar extends EntityInstance {
void setConflict (int val);
int getConflict();

void setB att(String val);
String getB att();
};

For the subtype, the following interface is generated:

public interface Sub extends EntityInstance {
void setFooConflict (int val);
int getFooConflict();

void setBarConflict (int val);
int getBarConflict();

void setF _att(String val);
String getF _att();

void setB att(String val);
String getB att();

Foo asFoo() ;
Bar asBar ()
};

For attributes with name clashes, like the conflict example, aqualified accessor is
provided. The name of a qualified accessor consists of get or put followed by the

name of the entity that defined the attribute (before any redeclaration), followed by
the capitalized schemaname, followed by the capitalized attribute name. The other
attributes (foo_att and bar_att in this example are left unqualified.

STEP TooLs, INC.

3.6.3

3 FrRoM EXPRESS 10 JAVA CLASSES

Thereis till the problem of calling a method that takes an argument of type Foo
when you have an instance of type Sub. Normally, Javawould cast the value to the
supertype as requested, but in this case, thereisno “extends’ relationship between
theinterfaces. A type cast method isgenerated for each EXPRESS supertypewhich
does not appear in the “extends’ clause. This cast method is named after the target
class, with“as’ prepended. The cast method returnsaview of the underlying object,
so any changes made are immediately reflected in the original object.

Complex Instances

Complex entity combinations (sometimescalled “AND/OR” instances) are instanc-
eswith aset of typesrather than asingletype. Thisisjust multiple inheritance, but
the EXPRESS schema does not define an ENTITY for the combination.

ST-Developer Javalibraries do not have specific classes or interfaces for the com-
binations. Instead, they are handled through the late-bound interface provided by
the EntityInstance interface.

To create a complex instance, call the newinstance method of a Population, Speci-
fying al the supertypes of the complex instance. The following example contains a
method that constructs a complex instance.

/* These import are assumed to be in effect

import com.steptools.schemas.config control_design;
import com.steptools.stdev.*;

import java.util.List;

*/

public EntityInstance create millimeter unit (Population pop) {
/* Must be a SI_UNIT and LENGTH UNIT combination */
EntityDomain[] supers = {Length unit.DOMAIN, Si_unit.DOMAIN};
EntityInstance ret = pop.newlInstance (supers) ;
return ret;

}

To work with data defined by one of the supertypes of acomplex instance, use the
castTo method of Entityinstance. The castTo method is declared to return Entityln-
stance, SO you must also use a Java cast to convert to object to the requested sub-
type. The following example builds upon the previous one to

public EntityInstance create millimeter unit (Population pop) {
/* Must be a SI_UNIT and LENGTH UNIT combination */
EntityDomain[] supers = {Length unit.DOMAIN, Si_unit.DOMAIN};
EntityInstance mm = pop.newlnstance (supers) ;

/* Set the SI_UNIT attributes */

ST-DEVELOPER FOR JAVA REFERENCE MANUAL

19

20

3 FrRoM EXPRESS 10O JAVA CLASSES

3.6.4

Si_unit mm as si unit = (Si_unit) mm.castTo (Si_unit.DOMAIN) ;
mm_as_si_unit.setPrefix (Si_prefix.MILLI);
mm_as_si_unit.setName (Si_unit name.MEIRE) ;

return mnm;

Views

Dueto differences between the Javaand EXPRESS |anguages, the binding provides
view objects when necessary. This has already been demonstrated above with the
asSuper methods in some multiple inheritance cases, and aso in the case of com-
plex instances. A view object can be used interchangeably with its underlying in-
stance. Changes to the view are instantly reflected in the underlying object. The
castTo method can be applied to any view of an instance to retrieve any other view
of the instance. Theisa method, likewise, returns the same value regardless of
which views of an instanceit is called on.

You must use the castTo method before applying a Java cast whenever thereisa
possibility that aview isinvolved. The best rule of thumb isto use castTo any case
where you are casting an Entitylnstance down the inheritance hierarchy. If you do
not use acastTo where you need to, the system throws a ClassCastException.

3.7

Enumeration Types

EXPRESS enumeration typesin are represented using the type-safe “ enum” design
pattern. For each enumeration, the EXPRESS compiler generates a class which con-
tainsastatic final field for eachitemin theenumeration. For example, thefollowing
EXPRESS definition:

TYPE ahead_or_behind = ENUMERATION OF (ahead, behind);
END_TYPE; -- ahead or behind

Resultsin the following Java class. (thisis asimplified version of the class):

public class Ahead or behind extends Enumeration {
public static final Ahead or behind AHEAD;
public static final Ahead or_behind BEHIND;

}

An attribute of thistype can be set as follows following code:

STEP TooLs, INC.

3 FrRoM EXPRESS 10 JAVA CLASSES

offset.setSense (Ahead. or_behind.BEHIND) ;

Also notethat dueto the type-saf e enum pattern used here, thereisonly oneinstance
of AHEAD and BEHIND, and so it is always safe to compare any instance of
Ahead_or_behind to the constants Ahead_or_behind. AHEAD,
Ahead_or_behind.BEHIND or any other instance of Ahead_or_behind.

3.8

Select Types

An EXPRESS sdlect type represents a union of several a set of underlying types,
known as selections. In Java, a select type is mapped to a subclass of
com.steptools.stdev.Selection. For each selection, the class contains a get method
and a query (is) method. The get method consists of the keyword “get” prepended
to the name of the desired type. Thiswill return the value in the select, or throw
SelectTypeException if the underlying value is of a different type.

The select classincludes anested class member named Selection. This class serves
as an enumeration which identifies the type of the select. The select classinclude
one instance of Selection for each selection type defined in the EXPRESS. The Se-
lection of a select instance can be determined by call the selection() method.

Consider the following EXPRESS definition.

TYPE axis2_placement = SELECT (axis2_placement 2d, axis2_placement 3d);
END TYPE; -- axis2_placement

Thiswill result in thefollowing class. (the actual classincludes additional members
that have been omitted for clarity.):

public abstract class Axis2_placement extends Select {
public static final class Selection extends SelectionBase;

public static final Selection SELAxis2_placement_2d;
public static final Selection SELAxis2_placement_3d;

public SelectionBase selection();
/* Accessor methods */
public Axis2_placement. 2d getAxis2_placement 2d()

throws SelectTypeExceptionl

public Axis2_placement 3d getAxis2_placement 3d()
throws SelectTypeException

/* Type query methods */

ST-DEVELOPER FOR JAVA REFERENCE MANUAL

21

3 FrRoM EXPRESS 10O JAVA CLASSES

public boolean isAxis2_placement 2d();
public boolean isAxis2_placement 3d();

Using this example, we can process an instance of Axis2_placement with the fol-
lowing method.

void process 2d placement (Axis2_placement_2d pl);
void process 3d placement (Axis2_placement_3d pl);

void process (Axis2_Placement pl, PrintStream out) {
if (pl.isAxis2Placement_2d()) {
out.println ("Have 2D placement");
process_2d placement (pl.getAxis2_placement_3d());
}
else if (pl.isAxis2Placement_3d()) {
out.println("Have 3D placement");
process_3d placement (pl.getAxis2_placement_3d());

3.8.1 Creating Select Instances

A select instance is an immutabl e object. Once created, the value of a select cannot
be changed. An entity attribute holding a select is changed by creating and assign-
ing anew select instance.

The EXPRESS compiler generates a method in both the Schema and Population
classesto initialize each select in the schemafor each possible type. These methods
are named “new” followed by the name of the select type, any intermediate types
and, if the underlying isaprimitive, the name of the selection. Giventhefollowing
EXPRESS definition:

TYPE measure value = SELECT
(area_measure,
context_dependent_measure,
count_measure) ;

END TYPE; —-- measure value

The Schema and Population classes contain the following methods:

public static Measure value
newMeasure valueArea measure (double v);

public static Measure value
newMeasure valueContext_dependent measure (double v);

public static Measure value

STEP TooLs, INC.

3.8.2

3 FrRoM EXPRESS 10 JAVA CLASSES

newMeasure valueCount_measure (double v) ;
Using these methods, you can create a Measure_value as follows:

void Measure value create (Population pop) {
Measure value val = pop.newMeasure valueAreaMeasure(5.76) ;

}

Selection Naming Conventions

The elements of EXPRESS select types must be entity or named defined types. The
name of the methods are determined by the names of the entities or defined typesin
theinformation model. Consider the following EXPRESS type:

TYPE measure value = SELECT
(area_measure,
context_dependent_measure,
count_measure) ;

END TYPE; -- measure value

Thisresultsin a class that includes the following members:

public class Measure value extends Select {
public static final class Selection extends SelectionBase {

}

public static final Selection SELArea_measure;

public static final Selection SELContext dependent measure;
public static final Selection SELCount measure;

public double getArea measure();
public double getContext dependent _measure() ;
public double getCount_measure() ;

public boolean isArea measure() ;
public boolean isContext_ dependent measure() ;
public boolean isCount_measure() ;

Note that the accessor, and query methods, and names of the selection enumerators
are based in the name of the EXPRESS defined types (e.g. area_measure), and not
the underlying primitivetypes (e.g. real). Thereturn types of those attributes are the
primitive types, however.

ST-DEVELOPER FOR JAVA REFERENCE MANUAL

23

3 FrRoM EXPRESS 10O JAVA CLASSES

3.8.3 Nested Selects

In an EXPRESS a select type may contain selections which are themsel ves select
types. Inthiscase, all of the selections of the included select types are incorporated
into the classfor the outermost select type asif they were declared in the outer select
type. If there are any duplicate selections, only asingle version of the duplicate se-
lection produced. This behavior is consistent with the EXPRESS semantics asin-
terpreted in the Part 21 specification.

For example, consider the following EXPRESS definitions:

TYPE characterized definition = SELECT
(characterized product_definition,
shape_definition);

END TYPE; -- characterized definition

TYPE characterized product_definition = SELECT
(product_definition,
product_definition relationship);

END TYPE; -- characterized product_definition

TYPE shape definition = SELECT
(product_definition_shape,
shape aspect,
shape_aspect_relationship) ;

END TYPE; -- shape definition

The characterized_definition select type includes two other select types within it.
This class for the EXPRESS compiler generates for thistype is equivalent to what
would be generated if the select members were expanded as follows:

TYPE characterized definition = SELECT
(product_definition,
product_definition relationship,
product_definition shape,
shape aspect,
shape_aspect_relationship) ;
END_TYPE; -- characterized definition

Note that the characterized_product_definition and shape_definition selections do
not appear in the combined select. The nested example above will produce the fol-
lowing “new” methods in the the Schema and Population classes.

public static Characterized definition
newCharacterized definition (Product_definition v);

public static Characterized definition
newCharacterized definition (Product_definition relationship v);

STEP TooLs, INC.

3 FrRoM EXPRESS 10 JAVA CLASSES

public static Characterized definition
newCharacterized definition (Product_definition shape v);

public static Characterized definition
newCharacterized definition (Shape aspect Vv);

public static Characterized definition
newCharacterized definition (Shape aspect relationship v);

EXPRESS also allows a second form of nested select type. In this case, the nested
select is enclosed by a simple defined type. Note that this usage doe not occur in
any of the STEP integrated resources. For example:
TYPE outer SELECT
(nested,
length) ;
END_TYPE;

TYPE inner = SELECT
(length,
color) ;

END TYPE;

TYPE length = REAL;
END_TYPE;

TYPE nested = inner;
END_TYPE;

In outer, the nested element is a defined type whose underlying typeisaselect. In
STERP thisisconsidered adistinct type, and so inner cannot be folded into outer, as
was shown in the previous example. A value of type outer can be:

nested. length
nested.color
length

For the compound types, the name of the Java definition is obtained by capitalizing
thefirst letter of each type, and concatenating the namestogether. Thisresultsinthe
following class for outer.

public class Outer extends Select {
public static final class Selection extends SelectionBase {

}

public static final Selection SELNestedLength;
public static final Selection SELNestedColor;
public static final Selection SELLength;

public double getNestedLength() ;
public Color getNestedColor();

ST-DEVELOPER FOR JAVA REFERENCE MANUAL

25

26

3 FrRoM EXPRESS 10O JAVA CLASSES

public double getLength();

public boolean isNestedLength();
public boolean isNestedColor();
public boolean isLength();

}

This example will produce the following “new” methods in the the Schema and
Population classes:

public static Outer newOuterNestedLength (double v);
public static Outer newOuterNested(Color v);
public static Outer newOuterLength (double v);

3.9

Aggregation Types

Aggregation typesin EXPRESS represent collections of values. ST-Devel oper pro-
vides some predefined aggregates in the com.steptools.stdev.keystone namespace.
All other aggregates are generated by the EXPRESS compiler in the namespace of
the schema that uses the aggregate. The built-in aggregates consist of list, bag, set
and arrays of boolean, integer, logical, real and strings.

The aggregate classes (both built-in and generated) implement the java.util.List in-
terface. Thismeansthat STEP aggregates can be search, sorted and processed using
the utility methods provided by the Java Collections Framework.

The class names concatenate the aggregate type (e.g. List, Bag, Set Or Array) with
the name of the underlying element. ThusalList of Foo ismapped to a class named
ListFoo.

Since aggregates implement the Java Collections List interface, each aggregate
class provides the following methods: add, addAll, addAll, clear, contains, contain-
sAll, equals, get, hashCode, indexOf, isEmpty, iterator, lastindexOf, listlterator, re-
move, removeAll, retainAll, set, size, subList, toArray. These methods are |oosely
typed, so they throw a ClassCastException if an attempt is made to insert an object
that does not belong in the aggregate.

For aggregates of double and integer, you must use the Javawrapper classesinteger
or Double when you put avalue using the loosely typed interface. Likewise, the
get() method isdeclared to return an Object so doubles and integerswill be returned
inawrapper object. (All other possibletypesare aready subtypes of Object, sothey
merely need to be cast to the desired type.)

STEP TooLs, INC.

3 FrRoM EXPRESS 10 JAVA CLASSES

The aggregate class also provides strongly-typed version of the add, get and set
methods. The add and set methods are overloaded to take a parameter of the ele-
ment type. The strongly-typed get method is named getValue().

Consider the following EXPRESS:

TYPE length measure = REAL;
END TYPE; —- length measure

ENTTITY cartesian_point
coordinates : LIST [1:3] OF length measure;
END _ENTITY; -- cartesian point

Thefollowing example creates and populates acartesian_point instance containing
alist of doubles.

Cartesian_point make point (Population pop, double x, double vy, double z) {
Cartesian_point ret = pop.newCartesian point() ;
ListReal coords = new ListReal();
coords.add (x) ;
coords.add(y) ;
coords.add(z) ;
ret.setCoordinates (coords) ;
return ret;

ST-DEVELOPER FOR JAVA REFERENCE MANUAL

27

28

3 FrRoM EXPRESS 10O JAVA CLASSES

STEP TooLs, INC.

	Contents
	Getting Started
	1.1 Overview
	1.2 A Simple Example
	1.3 Pre-installed Application Protocols

	Reading, Writing, and Traversing Data
	2.1 Overview
	2.2 Models and Populations
	2.3 Managing Entity Instances
	2.4 Accessing Entity Instances by Type
	2.5 Reading Part 21 Files
	2.6 Writing Part 21 Files
	2.7 Entity Instance Identifiers
	2.8 STEP Header

	From EXPRESS to Java Classes
	3.1 Overview
	Figure 3.1 — EXPRESS to Java Control Panel

	3.2 Command Line
	3.3 Namespaces
	3.4 Primitive Types
	3.5 EXPRESS Schemas
	3.5.1 Population
	3.5.2 Schema

	3.6 Entity Types
	3.6.1 Single Inheritance
	3.6.2 Multiple Inheritance
	3.6.3 Complex Instances
	3.6.4 Views

	3.7 Enumeration Types
	3.8 Select Types
	3.8.1 Creating Select Instances
	3.8.2 Selection Naming Conventions
	3.8.3 Nested Selects

	3.9 Aggregation Types

